Ореховская Александра Александровна

АЗОТНЫЙ РЕЖИМ ЧЕРНОЗЕМА ТИПИЧНОГО И ПРОДУКТИВНОСТЬ ОЗИМОЙ ПШЕНИЦЫ В ЗАВИСИМОСТИ ОТ УДОБРЕНИЙ, СПОСОБОВ ОБРАБОТКИ ПОЧВЫ И ВИДОВ СЕВООБОРОТОВ В УСЛОВИЯХ ЮГО-ЗАПАДНОЙ ЧАСТИ ЦЧР

Специальность 06.01.04 – Агрохимия

АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата сельскохозяйственных наук

Работа выполнена на кафедре земледелия, агрохимии и экологии ФГБОУ ВО Белгородский ГАУ на базе стационарного полевого опыта лаборатории плодородия почв и мониторинга ФГБНУ «Белгородский ФАНЦ РАН» в 2012-2014 гг.

Научный руководитель: Ступаков Алексей Григорьевич

доктор сельскохозяйственных наук, профессор кафедры земледелия, агрохимии и экологии

ФГБОУ ВО Белгородский ГАУ

Официальные оппоненты: Лобков Василий Тихонович

доктор сельскохозяйственных наук, профессор, профессор кафедры земледелия, агрохимии и агропочвоведения ФГБОУ ВО Орловский ГАУ

Чуян Наталия Анатольевна

доктор сельскохозяйственных наук, ведущий научный сотрудник лаборатории агропочвоведения ФГБНУ «Курский федеральный

аграрный научный центр»

Ведущая организация: ФГБНУ «Всероссийский научно-

исследовательский институт сахарной свёклы и

сахара имени А.Л. Мазлумова»

Защита состоится «25» декабря 2019 г. в 10:00 часов на заседании диссертационного совета Д. 220.005.01 при ФГБОУ ВО Брянский ГАУ по адресу: 243365, Брянская область, Выгоничский район, с. Кокино, ул. Советская 2а, корпус 4, конференц-зал.

E-mail: uchsovet@bgsha.com. Тел. факс: +7 (48341) 24-7-21

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВО Брянский ГАУ и на сайте организации по адресу http://bgsha.com

Автореферат разослан «___» _____2019 и размещён на сайте Высшей аттестационной комиссии Министерства образования и науки Российской Федерации http://vak.ed.gov.ru.

Учёный секретарь диссертационного совета

Дьяченко Владимир Викторович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Основное свойство почвы — это ее плодородие, которое определяется содержанием органического вещества и макроэлементов. (Кореньков Д.А., 1999). Ведущая роль в формировании урожая сельскохозяйственных культур принадлежит азоту. По мнению ряда ученых в почвах Центрально-Черноземного региона содержание азота находится на минимальном уровне. Доказано, что систематическое внесение азотных удобрений эффективно и приводит к повышению содержания минеральных форм азота в пахотном слое. (Лаврова И.А., Филимонов Д.А., 1976, Минеев В.Г., 2003).

В связи с этим возникла необходимость в разработке альтернативных энерго- и ресурсосберегающих агротехнических приемов. Внедрение этих приемов позволило бы не только улучшить плодородие почвы, а также повысить урожайность и качество зерна озимой пшеницы.

Цель исследований — обоснование эффективного применения минеральных и органических удобрений, способов основной обработки почвы и севооборотов для обеспечения оптимального азотного режима чернозема типичного, повышения урожайности и качества зерна озимой пшеницы в условиях юго-западной части Центрально-Чернозёмного региона.

Задачи исследования:

- 1. Изучить комплексное влияние минеральных и органических удобрений, способов основной обработки почвы и севооборотов на азотный режим чернозема типичного;
- 2. Оценить эффект от длительного применения минеральных и органических удобрений, способов основной обработки почвы на гумусное состояние чернозема типичного;
- 3. Определить влияние предшественников, уровней удобренностей на урожайность и качество зерна озимой пшеницы;
- 4. Дать экономическую и биоэнергетическую оценку эффективности изучаемых агроприемов;
- 5. На основании полученных данных сделать выводы и рекомендовать производству оптимальные приемы улучшения азотного режима черноземов, позволяющие получать наибольшую продуктивность культур.

Научная новизна. Впервые в Белгородской области за последние десятилетия на черноземе типичном проведено комплексное изучение азотного режима почвы; определено влияние способов основной обработки почвы, органических и минеральных удобрений при длительном их использовании на содержание и динамику азота в почве, дана математическая оценка этому явлению; определено влияние предшественников, минеральных удобрений, их сочетаний с органическими на урожайность и качество зерна озимой пшеницы; определена коррелятивная зависимость урожайность зерна озимой пшеницы от содержания различных форм азота в почве, содержания гумуса и плотности

почвы и установлена пригодность данных о содержании нитратного и гидролизуемого азота в почве для регулирования применения азотных удобрений на черноземе типичном.

Определена роль минеральных удобрений, применяемых отдельно и в сочетании с навозом в повышении продуктивности и качества озимой пшеницы. Получены сведения о содержании в черноземе типичном различных форм азота, его изменениях под влиянием удобрений, способов основной обработки почвы.

Теоретическая и практическая значимость. Результаты исследований позволяют рекомендовать хозяйствам с различным уровнем экономических и организационно-технологических возможностей дифференцированный подход к выбору приемов выращивания озимой пшеницы, обеспечивающих урожайность

зерна 5,0 т/га и высокий уровень рентабельности производства.

Они могут быть использованы при проектировании ресурсосберегающих и экологически обоснованных технологий ее возделывания.

Основные положения, выносимые на защиту:

- 1. Азотный режим почвы определяется степенью удобренности, видами севооборота и способами основной обработки почвы.
- 2. Зернотравянопропашной севооборот, минеральные удобрения в комплексе с навозом способствует накоплению гумуса.
- 3. Повышение урожайности и качества зерна озимой пшеницы обеспечивается применением минимальной обработки почвы с внесением минеральных удобрений в сочетании с последействием навоза.
- 4. Экономическая и биоэнергетическая эффективности возделывания озимой пшеницы зависит от вида севооборота, способа обработки почвы и удобрений.

Личный вклад автора. Все полевые работы и аналитические исследования были проделаны при непосредственном участии автора. Анализ и статистическая обработка экспериментальных данных, а также написание текста диссертации с выводами и предложениями производству, выполнены лично автором.

Степень достоверности работы. Достоверность результатов диссертационной работы подтверждается статистическими критериями, полученными в результате математической обработки сравнительно большого массива данных методом трехфакторного дисперсионного анализа на принятом в биологии уровне вероятности.

Апробация материалов исследований. Результаты диссертационной работы были представлены на Международных научно-производственных конференциях (Москва, 2013, 2017; Воронеж, 2013, 2016; Майский, 2013, 2014, 2015, 2016, 2017), а также на научно-практической конференции Курского отделения межрегиональной общественной организации «Общество почвоведов имени В.В. Докучаева» (Курск, 2016). Результаты работы рассматривались в рамках Московской международной летней экологической

школы и получили положительную оценку (Москва, 2013, 2014). Результаты работы получили награды на конкурсах: Diplom in recognition of an outstanding scholastic record, and in apprecation of contribution to the agricultural sciences of IPNI (Диплом Международного института питания растений в знак признания выдающейся научной деятельности и за вклад в сельскохозяйственные науки) – Norcross, 2014 г., диплом и серебряная медаль Российской агропромышленной выставки «Золотая Осень-2016» — Москва, 2016 г.

Публикации результатов исследований. По итогам работы было опубликовано 20 статей, из них 1 статья в журнале, индексируемом в Scopus / Web of Science, 3 — в изданиях рекомендованных ВАК Министерства образования и науки РФ.

Структура и объём работы. Диссертационная работа написана на 150 страницах компьютерного текста. Состоит из 6 глав, выводов и рекомендаций производству, а также списка литературы, который включает 236 источников, из них 6 иностранных. Работа содержит 13 таблиц, 40 рисунков и 18 приложений.

Благодарности. Автор выражает глубокую признательность доктору сельскохозяйственных наук, профессору кафедры земледелия, агрохимии и экологии А.Г. Ступакову, директору ФГБНУ «Белгородский ФАНЦ РАН», доктору сельскохозяйственных наук С.И. Тютюнову, заведующему лабораторией плодородия почв и мониторинга, доктору с.-х. наук В.Д. Соловиченко, сотрудникам лаборатории плодородия почв и мониторинга «Белгородского ФАНЦ РАН», коллективу кафедры агрохимии, земледелия и экологии за ценные консультации и рекомендации.

СОДЕРЖАНИЕ РАБОТЫ

Глава 1. Влияние удобрений, способов основной обработки почвы и севооборотов на азотный режим чернозема типичного и продуктивность озимой пшеницы (обзор литературы).

В главе приведен анализ исследований по изучению роли азота в питании озимой пшеницы, изменению азотного режима почв под влиянием удобрений, способов основной обработки почвы.

Глава 2. Характеристика объекта, условия и методика исследований.

Исследования проводились в 2011-2014 гг. на базе лаборатории плодородия почв и мониторинга в стационарном полевом опыте, заложенном в 1987 году в ФГБНУ «Белгородский ФАНЦ РАН», расположенного в юго-западной части Центрально-Черноземного региона.

Территория места проведения опытов характеризуется некоторыми особенностями климата. Он умеренно-континентальный, с теплым, порой засушливым, летом и сравнительно холодной зимой.

Почва опытного участка – чернозем типичный среднемощный малогумусный тяжелосуглинистый на лессовидном суглинке с содержанием в

пахотном слое гумуса 5,1-5,6 %, подвижного фосфора 4,8-5,7 мг/100 г почвы, обменного калия 9,2-12,1 мг/100 г почвы, pH солевой вытяжки 5,8-6,4.

В опыте использовался метод расщепленных делянок. Размещение делянок систематическое в один ярус. Опыт трехфакторный, его повторность в пространстве трехкратная, во времени — трехкратная. Посевная площадь делянки 120 m^2 , учётная — 100 m^2 .

Чередование культур в севооборотах — зернотравянопропашной: эспарцет 1 года пользования, эспарцет 2 года пользования, озимая пшеница, сахарная свекла, ячмень + эспарцет; зернопропашной: горох, озимая пшеница, сахарная свекла, ячмень, кукуруза на зерно.

В опыте изучались три способа основной обработки почвы:

- отвальная вспашка плугом ПЛН-5-35 на глубину 20-22 см, которой предшествуют дисковые лущения на глубину 6-8 и 8-10 см;
 - безотвальная обработка плугом типа «Параплау» на глубину 20-22 см;
 - минимальная обработка дисковой бороной БДТ-7 на глубину 10-12 см.

Минеральные удобрения под озимую пшеницу вносились два раза: в основное внесение доза $N_{120}P_{120}K_{120}$ и весной в подкормку — N_{60} . Навоз вносился один раз в ротацию севооборота под сахарную свеклу в дозе $80\,$ т/га, и озимая пшеница испытывала его последействие на $4\,$ год.

Учетную площадь делянки убирали прямым комбайнированием. Для уборки использовали комбайн «Сампо». Урожай с делянки затаривали в мешки, взвешивали на весах и пересчитывали на 14 % влажность и 100 % чистоту.

В опыте были проведены следующие учеты и наблюдения:

Почва – были отобраны почвенные образцы на глубину до 0,5 м по слоям 0-10, 10-20, 20-30, 30-50 см по вариантам опыта в двух несмежных повторениях:

- 1. Содержание общего азота, %, по Кьельдалю (ГОСТ 26107);
- 2. Содержание нитратного азота в почве, мг/кг, ионометрическим методом в модификации ЦИНАО (ГОСТ 26951-86);
- 3. Содержание гидролизуемого азота, мг/кг, по Корнфилду в модификации ЦИНАО (ГОСТ 26107);
 - 4. Нитрификационная способность, мг/кг, методом Кравкова;
 - 5. Содержание гумуса, %, по Тюрину (ГОСТ 26213-91);
 - 6. Запасы гумуса, т/га расчетным методом;
 - 7. Соотношение С:N расчетным методом;

Растения:

- Урожайность зерна озимой пшеницы;
- Содержание сырого протеина, %;
- Содержание клейковины, %.

Глава 3. Влияние удобрений, способов основной обработки почвы и севооборотов на азотный режим чернозема типичного.

Рост урожаев сельскохозяйственных культур и повышение плодородия неразрывно связаны с содержанием элементов питания в почвах (А.В. Дедов, Богучевский Д.А., 2014).

Таблица 1 — Содержание общего азота в черноземе типичном в исходных почвенных образцах (1987 г.) и его изменение (+/—) по завершению 5 ротации севооборотов (2012 г.) в зависимости от удобрений, способов обработки почвы и видов севооборотов, %

Насыщенность 1 га севообор.		NPK под	Зернотра	авянопроп	ашной сег	вооборот	Зернопропашной севооборот				
площади		озимую	0-20 см		20-50 см		0-20 см		20-50 см		
на- воз	минер. удобр. *	пшеницу	1987 г.	+/_	1987 г.	+/_	1987 г.	+/_	1987 г.	+/_	
Вспашка											
_	0	0	0,178	0,006	0,205	0,008	0,240	0,007	0,250	0,010	
0	NPK*	$N_{180}P_{120}K_{120}$	0,198	0,010	0,216	0,008	0,252	0,017	0,256	0,009	
	0	0	0,198	0,021	0,218	0,009	0,178	0,061	0,232	0,011	
16	NPK	$N_{180}P_{120}K_{120}$	0,245	0,022	0,212	0,008	0,202	0,066	0,232	0,009	
Безотвальная обработка											
0	0	0	0,214	-0,017	0,252	0,010	0,275	-0,022	0,261	0,010	
0	NPK	$N_{180}P_{120}K_{120}$	0,236	0,001	0,220	0,009	0,226	0,015	0,229	0,010	
	0	0	0,262	0,021	0,278	0,009	0,335	0,015	0,316	0,010	
16	NPK	$N_{180}P_{120}K_{120}$	0,286	0,042	0,289	0,009	0,251	0,058	0,275	0,011	
				Миним	альная об	работка					
	0	0	0,330	-0,019	0,290	0,009	0,328	-0,037	0,277	0,009	
0	NPK	$N_{180}P_{120}K_{120}$	0,313	-0,011	0,284	0,009	0,308	-0,006	0,294	0,011	
	0	0	0,348	-0,005	0,276	0,009	0,271	0,016	0,235	0,010	
16	NPK	$N_{180}P_{120}K_{120}$	0,321	0,002	0,281	0,010	0,306	0,017	0,282	0,010	
HCP	НСР ₀₅ (для слоя почвы 0-20 см)										

для фактора A=0,001, B=0,001, C=0,001, AB=0,002, AC=0,001, BC и ABC=0,002 Примечание: * доза внесения NPK: зернотравянопропашной севооборот $N_{84}P_{124}K_{124}$, зернопропашной севооборот $N_{120}P_{124}K_{124}$

Нашими исследованиями установлено, что при длительном применении удобрений содержание общего азота в почве увеличилось (табл. 1). В зернотравянопропашном севообороте лучше себя показала безотвальная обработка, а в зернопропашном — вспашка, где увеличение содержания при сочетании минеральных удобрений и навоза составило 0,042 и 0,066 % соответственно. При проведении минимальной обработки почвы в обоих севооборотах произошло снижение содержания общего азота, повышение было отмечено только при сочетании минеральных удобрений и навоза.

Применение минеральных удобрений и последействия навоза отдельно по безотвальной обработке повышало содержание гидролизуемого азота в слое 0-20 см, а по минимальной обработке — в слое 0-10 см. Только сочетание минеральных удобрений и последействия навоза способствовало увеличению во всех изучаемых слоях почвы, что также отмечено и по вспашке при использовании всех систем удобрений: минеральной, органической и органоминеральной.

Таблица 2 – Содержание гидролизуемого азота в черноземе типичном в зависимости от длительного использования удобрений, способов обработки почвы и видов севооборотов, мг/кг (2012-2014 гг.)

Насыщенность 1 га севооборотной площади		NPK под озимую	Зерн	отравян севоо		шной	Зернопропашной севооборот				
	минеральные	пшеницу		слои по	чвы, см		слои почвы, см				
навоз	удобрения*		0-10	10-20	20-30	30-50	0-10	10-20	20-30	30-50	
Вспашка											
	0	0	146	143	131	97	142	138	128	117	
0	NPK	$N_{180}P_{120}K_{120}$	143	128	136	109	146	138	137	121	
	0	0	139	142	125	111	139	143	132	125	
16	NPK	$N_{180}P_{120}K_{120}$	157	142	143	128	148	143	149	131	
Безотвальная обработка											
	0	0	135	102	121	93	136	117	127	103	
0	NPK	$N_{180}P_{120}K_{120}$	146	132	104	102	143	136	116	110	
16	0	0	143	135	130	120	142	138	132	124	
16	NPK	$N_{180}P_{120}K_{120}$	149	143	141	130	148	141	143	134	
		N	Линима	льная об	работка	l					
0	0	0	139	131	109	92	136	130	116	104	
0	NPK	N ₁₈₀ P ₁₂₀ K ₁₂₀	162	134	131	109	143	129	127	109	
	0	0	145	135	125	118	139	129	124	110	
16	NPK	N ₁₈₀ P ₁₂₀ K ₁₂₀	167	162	139	125	156	153	143	127	
HCP ₀₅ (для слоя почвы 0-20 см)											

для фактора A = 4,1, B = 5,0, C = 5,7, AB = 7,0, AC = 8,1, BC и ABC = 9,9 Примечание: * доза внесения NPK: зернотравянопропашной севооборот $N_{84}P_{124}$ зернопропашной севооборот – $N_{120}P_{124}K_{124}$

При проведении регрессионного анализа была выявлена достаточно высокая зависимость урожайности от его содержания как в слое 0-20 (R=0.7005), так и в слое 0-50 см (R=0.7637).

При проведении вспашки нитрификационная способность почвы повышается во всех изучаемых слоях почвы при использовании всех систем удобрений, что свидетельствует о гомогенности почвы для данной формы азота.

При проведении безотвальной обработки ее усиление наблюдалось в слое 0-20 см в обоих севооборотах. А при проведении минимальной обработки – в слое 0-10 см только в зернотравянопропашном севообороте. зернопропашного севооборота по минимальной обработке присуще более равномерное распределение содержания нитратного азота после компостирования по всем слоям почвы, что обусловлено наличием в севообороте 40 % пропашных культур.

Таблица 3 – Нитрификационная способность чернозема типичного в зависимости от длительного использования удобрений, способов обработки почвы и видов севооборотов, N-NO₃ после компостирования, мг/кг (2012-2014 гг.)

Насыщенность 1 га) ypyr	Севообороты									
	оборотной лощади	NPK под озимую	зерн	отравян	опропац	иной	зернопропашной					
	минер.	пшеницу	слои почвы, см									
навоз	добр.*		0-10	10-20	20-30	30-50	0-10	10-20	20-30	30-50		
				Вспаш	ка							
0	0	0	29,2	35,6	27,5	15,5	34,5	42,2	28,7	22,4		
U	NPK	$N_{180}P_{120}K_{120}$	59,9	39,5	36,2	27,4	38,8	32,9	42,6	36,3		
16	0	0	48,2	42,9	38,8	31,8	42,0	41,7	34,2	28,0		
16	NPK	$N_{180}P_{120}K_{120}$	71,5	59,5	59,8	53,7	56,5	47,5	49,4	39,5		
Безотвальная обработка												
0	0	0	43,1	35,1	37,7	24,5	36,5	35,5	31,3	15,4		
U	NPK	N ₁₈₀ P ₁₂₀ K ₁₂₀	83,2	65,5	28,4	41,0	79,3	59,7	42,5	33,3		
16	0	0	39,3	47,7	34,5	21,7	38,9	81,1	42,9	28,3		
10	NPK	$N_{180}P_{120}K_{120}$	76,7	82,9	47,9	35,5	53,5	35,6	43,5	32,0		
	.		Миним	иальная	обработ	ка						
	0	0	40,3	47,9	19,8	15,8	42,3	32,4	30,6	17,0		
0	NPK	N ₁₈₀ P ₁₂₀ K ₁₂₀	49,4	37,3	29,6	19,7	58,4	48,3	60,4	28,1		
16	0	0	48,1	35,5	34,7	17,5	40,5	44,9	31,2	13,6		
16	NPK	N ₁₈₀ P ₁₂₀ K ₁₂₀	54,6	39,5	35,8	36,7	52,7	50,2	46,3	30,3		
HCP_{05}	HCP_{05} (для слоя почвы 0-20 см)											
лля фактора $A = 4.5$, $B = 5.6$, $C = 6.4$, $AB = 7.9$, $AC = 9.1$, BC и $ABC = 11.1$												

Для фактора A=4,5, B=5,6, C=6,4, AB=7,9, AC=9,1, BC и ABC=11,1 Примечание: * доза внесения NPK: зернотравянопропашной севооборот $N_{84}P_{124}K_{124}$, зернопропашной севооборот – $N_{120}P_{124}K_{124}$

Данные регрессионного анализа свидетельствуют о несколько более высокой взаимосвязи урожайности от нитрификационной способности в слое 0-50 см (R=0,6650), чем в слое 0-20 см (R=0,5276).

Содержание нитратного азота по вспашке без применения удобрений было равномерно распределено по всем изучаемым слоям почвы в обоих севооборотах. Применение минеральных удобрений и навоза по отдельности увеличивало его содержание в слое 0-20 см. А сочетание минеральных удобрений и последействия навоза способствовало повышению во всех слоях почвы.

Таблица 4 — Содержание нитратного азота в черноземе типичном в зависимости от длительного использования удобрений, способов обработки почвы и видов севооборотов, мг/кг (2012-2014 гг.)

Насыщенность 1 га			Севообороты								
севооборотной площади		NPK под озимую	зернотр	авянопро	пашной	зернопропашной					
	минер.	пшеницу	слои почвы, см								
навоз	удобр.*	·	0-20	20-50	50-100	0-20	20-50	50-100			
Вспашка											
0	0	0	6,1	6,1	4,7	7,7	6,4	1,9			
0	NPK	$N_{180}P_{120}K_{120}$	24,5	7,4	7,6	16,1	7,0	6,4			
1.6	0	0	14,6	7,1	2,3	11,2	6,6	5,5			
16	NPK	$N_{180}P_{120}K_{120}$	34,9	19,0	13,6	27,0	17,3	4,0			
Безотвальная обработка											
0	0	0	7,3	5,7	3,8	9,5	7,4	9,3			
0	NPK	$N_{180}P_{120}K_{120}$	7,1	12,6	5,9	14,6	8,5	13,0			
1.6	0	0	13,1	4,9	2,7	9,9	3,7	8,9			
16	NPK	$N_{180}P_{120}K_{120}$	6,7	17,3	10,9	12,9	6,6	4,5			
		Мин	имальная	обработ	ка		•	•			
0	0	0	6,7	7,5	2,8	7,7	4,6	2,8			
0	NPK	$N_{180}P_{120}K_{120}$	11,5	9,6	4,2	11,6	7,0	7,3			
	0	0	7,0	5,3	3,1	8,7	7,8	5,3			
16	NPK	N ₁₈₀ P ₁₂₀ K ₁₂₀	14,5	15,2	8,2	15,1	19,2	4,7			
HCP ₀₅ (для слоя почвы 0-20 см)											
для факто	pa $A = 1,9, B$	= 2.3, C = 2.7, L	AB = 3,3,	AC = 3.8	, ВС и АЕ	BC = 4,7					

Примечание: * доза внесения NPK: зернотравянопропашной севооборот – $N_{84}P_{124}K_{124}$, зернопропашной севооборот – $N_{120}P_{124}K_{124}$

Применение минеральных удобрений отдельно и В сочетании последействием навоза по безотвальной обработке в зернотравянопропашном севообороте обеспечило повышение в слое почвы 20-50 CM. зернопропашном – в слое 0-20 см, что связано с 2-летним выращиванием эспарцета в первом севообороте. По минимально обработке также отмечено увеличение содержания нитратного азота в слое 0-20 см при использовании минеральных удобрений, и только сочетание их с последействием навоза повышало его содержание в слое 0-50 см. Регрессионный анализ выявил более зависимость урожайности озимой пшеницы от нитратного азота в слое 20-50 см (R=0,7124), чем в слоях 0-20 (R=0,5497) и 50-100 cm (R=0,4105).

Глава 4. Влияние удобрений, способов основной обработки почвы и севооборотов на гумусовое состояние чернозема типичного.

Агроэкологическое состояние почв напрямую связано с накоплением, содержанием и запасами в почве органического вещества. В результате сокращения поступления в почву органического вещества после распашки черноземов наблюдается уменьшение содержание гумуса и усиление процессов минерализации, интенсивность которых зависит от характера использования почв и зональных условий (Кирюшин В.И., 2010).

Таблица 5 – Содержание гумуса в черноземе типичном в исходных почвенных образцах (1987 г.) и его изменение (+/-) по завершению 5 ротации севооборотов (2012 г.) в зависимости от удобрений, способов обработки почвы и видов севооборотов, %

Насыщенность 1га севооборот-			Севообороты										
		NPK под	зерн	нотравян	опропаш	ной	зернопропашной						
ной г	ілощади	озимую пшеницу	0-20) см	20-50 см		0-20 см		20-50 см				
навоз	минер. удобр.	,	1987г.	+/-	1987г.	+/-	1987г.	+/-	1987г.	+/-			
Вспашка													
0	0	0	5,24	0,28	4,78	0,57	5,32	0,18	5,48	0,02			
U	NPK*	$N_{180}P_{120}K_{120}$	5,43	0,38	4,58	0,81	5,27	0,37	4,34	0,79			
16	0	0	5,41	0,39	4,85	0,17	5,32	0,2	4,45	0,36			
10	NPK	$N_{180}P_{120}K_{120}$	5,67	0,41	4,75	1,33	5,18	0,3	4,41	0,64			
Безотвальная обработка													
0	0	0	5,42	0,1	4,98	0,13	5,34	0,04	5,3	0,01			
U	NPK	$N_{180}P_{120}K_{120}$	5,25	0,19	4,14	0,63	5,25	0,25	3,92	0,12			
16	0	0	5,6	0,32	4,68	0,3	5,28	0,17	4,29	0,04			
10	NPK	$N_{180}P_{120}K_{120}$	5,17	0,6	4,66	0,83	5,27	0,49	4,49	0,63			
			Мин	нимальна	ая обрабо	тка							
0	0	0	5,83	0,33	5,3	0,49	5,33	0,15	5,59	-0,08			
U	NPK	$N_{180}P_{120}K_{120}$	5,55	0,4	4,73	0,47	5,31	0,31	4,32	0,55			
16	0	0	5,1	0,49	4,51	0,44	5,49	0,23	4,71	0,37			
10	NPK	$N_{180}P_{120}K_{120}$	5,12	0,72	5,1	0,43	5,33	0,48	5,11	0,54			
	НСР ₀₅ (для слоя почвы 0-20 см) для фактора A = 0,13, B = 0,19, C = 0,16, AB = 0,26, AC = 0,23, BC и ABC = 0,32												

для фактора A = 0,13, B = 0,19, C = 0,16, AB = 0,26, AC = 0,23, BC и ABC = 0,32 Примечание: * доза внесения NPK: зернотравянопропашной севооборот $-N_{84}P_{124}K_{124}$, зернопропашной севооборот – $N_{120}P_{124}K_{124}$

При анализе многолетней динамики в севообороте с травами достоверное увеличение содержания гумуса наблюдалось на безотвальной и минимальной обработках почвы. При проведении вспашки отмечена устойчивая тенденция к его увеличению. В севообороте с горохом выявлено увеличение содержания гумуса при проведении минимальной обработки почвы. Органо-минеральная система удобрений обусловила в зернотравянопропашном севообороте увеличение содержания гумуса в слое 0-20 см на 0,41-0,72 %, а в зернопропашном на 0,30-0,48 %.

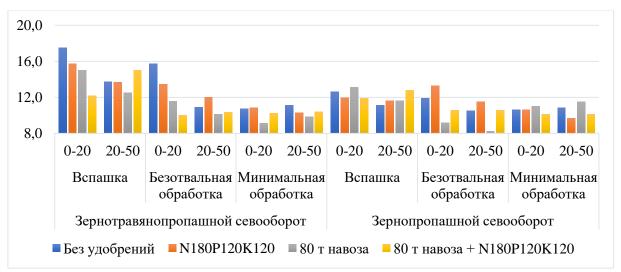


Рис. 1. Соотношение C:N в слоях почвы 0-20 и 20-50 см (2012-2014 гг.)

Соотношение азота и углерода в почве было более широким в зернотравянопропашном севообороте по сравнению с зернопропашным, что связано с относительно более высоким накоплением углерода, чем азота при двухлетнем выращивании трав. Применение удобрений как минеральных, так и навоза способствовало сужению соотношения общего углерода и азота, что связано с внесением высокой дозы азотных удобрений. Со снижением глубины основной обработки почвы также наблюдалось сужение этого соотношения, причем, большим оно было в зернотравянопропашном севообороте.

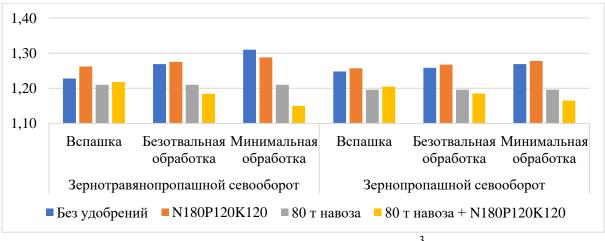


Рис. 2. Плотность почвы в слое 0-20 см, г/см³ (2012-2014 гг.)

Влияние способа основной обработки почвы на ее плотность в среднем по двум севооборотам проявилась следующим образом. Глубокая вспашка уменьшила плотность почвы в слое 0-20 см при применении минеральных удобрений и последействия навоза как отдельно, так и в сочетании.

Что касается севооборотов, то здесь различия незначительны. Зависимость плотности почвы от последействия навоза обратная — она уменьшалась на всех применяемых способах обработки почвы. Влияние минеральных удобрений на плотность почвы неоднозначное — при использовании отдельно в среднем по двум севооборотам она увеличивалась, а при сочетании с последействием навоза — уменьшалась.

Глава 5. Влияние удобрений, способов основной обработки почвы и севооборотов на продуктивность озимой пшеницы.

Одной из важнейших задач, стоящих перед сельскохозяйственным производством, является обеспечение продовольственной безопасности страны. Для этого необходимо применение минеральных удобрений в повышенных дозах, иначе снижается плодородие почвы и урожайность культур (Богомазов Н.П. и др., 1996; Габбибов М.А., 2001; Корнева Н.Г. и др., 1989; Минакова О.А., Александрова Л.В., 2008).

Таблица 6 – Урожайность зерна озимой пшеницы в зависимости от удобрений, способов основной обработки почвы и предшественников, т/га (2012-2014 гг.)

Насыщенность 1 га севооборотной площади			Севообороты									
		Дозы NPK	зернотр	авяноп	ропа	ашной	зернопропашной					
		под озимую	предшественники (фактор А)									
	минераль-	пшеницу	эспарцет 2 г.п.				горох					
навоз	ные удобрения*	(фактор В)	Урожай	í-	- +/-		Урожай	- -	- /-			
	удоорения		ность	T/	га	%	ность	т/га	%			
Вспашка **												
0	0	0	2,98	-		-	2,93	-	-			
U	NPK	$N_{180}P_{120}K_{120}$	4,30	1,32		44,3	4,38	1,45	49,5			
16	0	0	3,68	0,70		23,5	3,78	0,85	29,0			
10	NPK	$N_{180}P_{120}K_{120}$	4,70	1,72		57,7	4,85	1,92	65,5			
	Безотвальная обработка											
0	0	0	2,98	-		-	3,09	-	-			
U	NPK	$N_{180}P_{120}K_{120}$	4,15	1,17		39,3	4,18	1,09	35,3			
16	0	0	3,53	0,55		18,5	3,68	0,59	19,1			
10	NPK	$N_{180}P_{120}K_{120}$	4,82	1,84		61,7	4,73	1,64	53,1			
	Минимальная обработка											
0	0	0	3,23	-		-	3,05	-	-			
U	NPK	$N_{180}P_{120}K_{120}$	4,44	1,21		37,5	4,32	1,27	41,6			
16	0	0	4,10	0,87		26,9	3,82	0,77	25,2			
10	NPK	$N_{180}P_{120}K_{120}\\$	4,96	1,73		53,6	4,93	1,88	61,6			
HCP ₀₅ ((т/га) для факто	opa A=0,56, B=0),49, C=0,	40, AB=	=0,9	08, AC=0),80, BC и	ABC = 0	,70			

Примечание: * доза внесения NPK на 1 га севооборотной площади: зернотравянопропашной севооборот — $N_{84}P_{124}K_{124}$, зернопропашной севооборот — $N_{120}P_{124}K_{124}$, ** - фактор С

Урожайность зерна озимой пшеницы в обоих севооборотах находилась на одном уровне вне зависимости от предшественника.

Наибольшая прибавка урожайности от сочетания применения минеральных удобрений и последействия навоза $-1,92\,$ т/га (65,5 %) наблюдалась в зернопропашном севообороте по вспашке, по сравнению с 1,64 т/га (53,1 %) по безотвальной обработке и 1,88 т/га (61,6 %) по минимальной обработке. В зернотравянопропашном севообороте наиболее высокая прибавка от сочетания минеральных удобрений и последействия навоза отмечена по безотвальной обработке почвы $-1,84\,$ т/га (61,7 %), по сравнению с 1,72 т/га (57,7 %) по вспашке и 1,73 т/га (53,6 %) по минимальной обработке.

В таблице 7 приведены корреляционная зависимость урожайности зерна озимой пшеницы от содержания в почве разных форма азота, гумуса и плотности. Также установлены уравнения линейной регрессии.

Таблица 7 – Зависимость урожайности зерна озимой пшеницы от разных форм азота, содержания гумуса и плотности почвы (2012-2014 гг.)

Поморожно	Слои почвы, см									
Показатели	0-20	20-50	50-100	0-50	0-100					
Содержание общего азота	y=2,24+6,34x r = 0,4299	y=2,63+5,10x r = 0,2270	-	y=2,15+6,80x r=0,3473	-					
Содержание гидролизуемого азота	y=-3,54+0.05x r=0,7005	y=-1,09+0,04x r = 0,7007	-	y=-3,05+0,05x r=0,7637	-					
Нитрификационная способность	y=2,59+0,03x r=0,5276	y=2,51+0,05x r=0,6631	-	y=2,19+0,05x r=0,6650	-					
Содержание нитратного азота	y=3,27+0,05x r=0,5497	y=3,05+0,10x r=0,7124	y=3,47+0,09x r=0,4105	y=2,15+6,80x r=0,3473	y=2,84+0,14x r=0,7015					
Содержание гумуса	y=-11,03+2,70x r=0,5316	y=-4,51+1,68x r=0,5968	-	y=-9,17+2,50x r=0,6504	-					
Плотность почвы	y=12,75-7,24x r = -0,4593	y=12,23-6,63x r = -0,4280	-	y=13,04-7,36x r=-0,4558	-					

Глава 6. Экономическая и энергетическая эффективность

Результаты исследований выявили, что общие затраты на возделывание озимой пшеницы по вспашке без внесения удобрений в обоих севооборотах на 160 руб. выше, чем по безотвальной обработке и на 320 руб. – по минимальной.

Внесение минеральных удобрений по вспашке в зернотравянопропашном севообороте обусловило повышение условно-чистого дохода с 1 га на 3484 рубля, по безотвальной и минимальной обработкам на 2443 и 2719 руб. соответственно.

В зернопропашном севообороте наблюдалась такие же закономерности, самое высокое повышение условно-чистого дохода было по вспашке, где оно составило 4386 рублей/га. В свою очередь по безотвальной и минимальной обработкам доход вырос на 1887 и 3136 руб./га соответственно.

При последействии навоза в зернотравянопропашном севообороте условночистый доход по вспашке и безотвальной обработке находился примерно на таком же уровне, как и при внесении минеральных удобрений. Такая же

закономерность наблюдалась и в зернопропашном севообороте. Самый высокий доход в обоих севооборотах был получен при сочетании внесения минеральных удобрений и последействия навоза по минимальной обработке.

Результаты оценки биоэнергетической эффективности изучаемых технологий показали, что содержание энергии в продукции при производстве озимой пшеницы изменялось от 58081 без применения удобрений до 139508 МДж/га при внесении минеральных удобрений в сочетании с последействием навоза. Общие затраты энергии на производство зерна озимой пшеницы в зернотравянопропашном севообороте без применения удобрений по обработкам выглядели так: по вспашке 12814, по безотвальной обработке 11793, и наименьшие затраты по минимальной обработке — 10802 МДж/га.

В зернопропашном севообороте данная закономерность сохранялась, но только с более высокими показателями. При последействии навоза удобрений затраты увеличивались.

При внесении минеральных удобрений общие затраты энергии в зернотравянопропашном севообороте увеличивались по способам обработки почв от 22 до 32 тыс. МДж/га с большими показателями по вспашке. В зернопропашном севообороте общие затраты энергии возросли по минимальной обработке. По всем изучаемым севооборотам наименьшие общие затраты совокупной энергии были отмечены по минимальной обработке, а наибольшие – по вспашке.

Заключение

- 1. В условиях неустойчивого увлажнения в юго-западной части ЦЧР Российской Федерации на черноземе типичном по завершении пяти ротаций севооборотов содержание общего азота в слое 0-20 см увеличилось при проведении вспашки и безотвальной обработки почвы соответственно на 0,022-0,066 и 0,042-0,058 %. По минимальной обработке отмечено снижение его содержания. Причем в зернотравянопропашном севообороте лучше проявила себя безотвальная обработка, а в зернопропашном вспашка. Влияние навоза было более эффективным, чем применение минеральных удобрений.
- 2. Содержание общего азота было выше в зернопропашном севообороте, чем в зернотравянопропашном на 0,043 и 0,068 % соответственно по вспашке и безотвальной обработке в слое почвы 0-10 см без применения удобрений, такая же закономерность сохранялась и в низлежащих слоях почвы. При этом выявлено большее влияние последействия навоза на 4 год, чем внесения минеральных удобрений.
- 3. В почве без применения удобрений содержание гидролизуемого азота выше по вспашке и составило 142-146 мг/кг почвы, а по безотвальной и минимальной обработкам было ниже 135-136 и 136-139 мг/кг соответственно. Внесение минеральных удобрений в сочетании с использованием навоза оказалось более эффективным по минимальной обработке.
- 4. Безотвальная обработка в зернотравянопропашном севообороте способствовала увеличению нитрификационной способности по минимальной

обработке и вспашке. Внесение минеральных удобрений обусловило повышение содержания нитратного азота после компостирования.

При внесении минеральных удобрений в сочетании с последействием навоза увеличение нитрификационной способности наблюдалось по всем изучаемым способам обработки почвы в обоих севооборотах.

- 5. Содержание нитратного азота в пахотном слое почвы без применения удобрений было выше по безотвальной обработке (7,3-9,5 мг/кг почвы), а меньше по вспашке (6,1-7,7 мг/кг) в обоих севооборотах. Внесение минеральных удобрений в сочетании с последействием навоза положительно влияло на содержание азота. Содержание азота заметно снижалось с глубиной.
- 6. Содержание гумуса возрастало при внесении минеральных удобрений в дозах $N_{84-120}P_{124}K_{124}$ из расчета на 1 га севооборотной площади по вспашке и минимальной обработке в обоих севооборотах. В свою очередь, в зернотравянопропашном севообороте по безотвальной обработке отмечено некоторое снижение, однако внесение навоза привело к увеличению содержания гумуса. По другим способам основной обработки почвы повышения содержания гумуса от навоза не наблюдалось

Применение минеральных удобрений в сочетании с навозом привело к повышению его содержания при использовании всех способов основной обработки почвы в слое 0-20 см на 0,41-0,72 и 0,30-0,49 % соответственно в зернотравянопропашном и зернопропашном севооборотах.

- 7. Запасы гумуса в почве в большей степени зависели от внесения удобрений, чем от применяемых способов основной обработки почвы. Причем, эффект был выше от внесения минеральных удобрений, чем от навоза. В обоих севооборотах наиболее высокие запасы отмечены при применении минеральных удобрений по вспашке и минимальной обработке. При сочетании минеральных удобрений и навоза наблюдалось увеличение запасов гумуса по вспашке, они оставались на том же уровне по безотвальной и минимальной обработкам в обоих севооборотах.
- 8. Соотношение углерода и азота в слое почвы 0-20 см по вспашке и безотвальной обработке без применения удобрений было более широким в зернотравянопропашном севообороте (15,7-17,5) по сравнению с зернопропашным (11,9-12,6), что связано с большим накоплением углерода, чем азота при двухлетнем выращивании трав. Применение минеральных удобрений и навоза способствовало сужению соотношения общего углерода и азота. Со снижением глубины основной обработки почвы также наблюдалось сужение соотношения С:N.
- 9. Применение удобрений привело к повышению урожайности озимой пшеницы по всем способам обработки почвы. Причем, минеральные удобрения оказывают большее влияние, чем последействие навоза на 4-й год. Наибольшая урожайность зерна -4,96 и 4,93 т/га наблюдалась при сочетания минеральных удобрений в дозе $N_{180}P_{120}K_{120}$ и последействия 80 т/га навоза по минимальной обработке почвы, где прибавки урожайности составили 1,73 и 1,88 т/га после эспарцета и гороха соответственно.

10. Внесение минеральных удобрений не оказало влияния на варьирование содержания сырого протеина в зерне озимой пшеницы в зернотравянопропашном севообороте по разным способам основной обработки почвы. В зернопропашном севообороте такая же закономерность отмечена по вспашке, по безотвальной и минимальной обработкам наблюдалось некоторое снижение его содержания.

Последействие навоза способствовало увеличению содержание сырого протеина при применении вспашки. По минимальной обработке произошло снижение его содержания в обоих севооборотах.

Содержание сырого протеина в зерне озимой пшеницы было выше в зернопропашном севообороте, что связано с лучшей обеспеченностью почвы азотом и более интенсивным выносом его с урожаем.

- 11. В обоих севооборотах внесение минеральных удобрений по вспашке и минимальной обработке не оказывало влияния на содержание клейковины в зерне. Последействие навоза по вспашке способствовало увеличению ее содержания, причем, эффективность была выше при отдельном внесении, чем в сочетании с минеральными удобрениями.
- В зернопропашном севообороте при внесении удобрений произошло снижение содержания клейковины, что связано с увеличением урожайности озимой пшеницы.
- 12. Установлено, что при возделывании озимой пшеницы наибольший условно-чистый доход составил 16555-16763 руб./га при себестоимости продукции 3562-3584 руб./т по минимальной обработке почвы при сочетании минеральных удобрений и последействия навоза на 4 год и не зависел от вида севооборота.

Наиболее высокая энергетическая эффективность получена при применении минеральных удобрений ($N_{120}P_{120}K_{120}$ под основную обработку + N_{60} кг/га в подкормку весной) в сочетании с последействием навоза. Содержание энергии в полученном урожае в 4,3-4,6 раз превосходило затраченную совокупную энергию на возделывание пшеницы.

Рекомендации производству

- 1. В юго-западной части Центрально-Черноземного региона на черноземе типичном для получения высоких и качественных урожаев озимой пшеницы с учетом разной обеспеченности хозяйств ресурсами рекомендуется при низком их уровне использовать последействие навоза в дозе $16\,$ т/га севооборотной площади, что позволит повысить экономические возможности, при среднем применять минеральные удобрения в дозе $N_{180}P_{120}K_{120}$, что позволит сохранить почвенное плодородие на исходном уровне и при высоком минеральные удобрения в сочетании с навозом, что обеспечит расширенное воспроизводство почвенного плодородия.
- 2. Для обеспечения оптимального азотного режима в почве под озимой пшеницей целесообразно проводить минимальную обработку на глубину 10-12

см при внесении минеральных удобрений в сочетании с последействием навозом.

3. Для создания благоприятных условий роста и развития озимой пшеницы необходимо размещать ее в севооборотах с эспарцетом, что позволит экономить до 30 % применения азотных минеральных удобрений по сравнению с возделыванием по гороху в зернопропашном севообороте.

Перспективы дальнейшей разработки темы

В дальнейшем планируется продолжение изучения данной темы: влияние средств химизации на экологическое и агрохимическое состояние чернозема типичного, а также продуктивность основных сельскохозяйственных культур. Разработка математических моделей по регулированию основных показателей плодородия почв, повышению урожайности и качества сельскохозяйственных культур.

Список работ, опубликованных по материалам диссертации

Публикации в изданиях, рекомендованных $BAKP\Phi$ и базах Scopus / Web of Science

- 1. Stupakov, A.G. Ecological and agrochemical bases of the nitrogen regime of typical chernozem depending on agrotechnical methods / A.G. Stupakov, A.A. Orekhovskaya, M.A. Kulikova, L.A. Manokhina, S.I. Panin, V.I. Geltukhina // IOP Conf. Series: Earth and Environmental Science. 315 (2019). 052027.
- 2. Соловиченко, В.Д. Изменение содержание гумуса в специализированных севооборотах в зависимости от элементов технологии / В.Д. Соловиченко, Е.В. Навольнева, А.Г. Ступаков, **А.А. Ореховская** // Сахарная свекла. − 2014. − № 10. C. 19-23.
- 3. **Ореховская, А.А.** Содержание нитратного азота в черноземе типичном под влиянием севооборотов, способов основной обработки почвы и норм внесения удобрений / **А.А. Ореховская**, Т.А. Ореховская // Инновации в АПК: проблемы и перспективы. Белгород. 2015. № 4 (8). С. 71-75.
- 4. **Ореховская, А.А.** Азотный режим чернозема типичного при длительном применении удобрений и урожайность озимой пшеницы / **А.А. Ореховская,** А.Г. Ступаков, М.А. Куликова // Научная жизнь. Саратов. 2018. № 12. С. 93-101.

Публикации в других изданиях:

- 4. Навольнева, Е.В. Агротехнические приемы повышения урожайности сельскохозяйственных культур / Е.В. Навольнева, **А.А. Ореховская** // Проблемы сельскохозяйственного производства на современном этапе и пути их решения: материалы Международной научно-производственной конференции, часть 2. п. Майский: изд-во БелГСХА им. В.Я. Горина. 2012. С. 44-46.
- 5. **Ореховская, А.А.** Азотный режим чернозема / **А.А. Ореховская** // XX международная научная конференция студентов, аспирантов и молодых ученых: Секция «Почвоведение». М.: МАКС Пресс. 2013. С. 182-183.

- 6. Навольнева, Е.В. Динамика гумусного состояния чернозема типичного при длительном применении удобрений в севообороте / Е.В. Навольнева, **А.А. Ореховская**, Ю.С. Пономаренко, М.А. Куликова, В.Д. Соловиченко // Проблемы и перспективы инновационного развития животноводства: материалы Международной научно-практической конференции. п. Майский: изд-во БелГСХА им. В.Я. Горина. 2013. С. 24.
- 7. **Ореховская, А.А.** Варьирование азотного режима чернозема типичного в зависимости от удобрений и севооборотов / **А.А. Ореховская,** Е.В. Навольнева, Ю.С. Пономаренко, А.Г. Ступаков, В.Д. Соловиченко // Проблемы и перспективы инновационного развития животноводства: материалы Международной научно-практической конференции. п. Майский: изд-во БелГСХА им. В.Я. Горина. 2013. С. 26.
- 8. **Ореховская, А.А.** Плодородие почвы в интенсивном земледелии юговосточной части ЦЧР / **А.А. Ореховская**, Ю.А. Федюкина // Развитие аграрного сектора экономики в условиях глобализации: материалы Международной научно-практической конференции. Воронеж: изд-во Воронежский ГАУ. 2013. С. 149-155.
- 9. Навольнева, Е.В. Влияние агротехнологических приемов на физические свойства почвы / Е.В. Навольнева, **А.А. Ореховская**, А.Г. Ступаков, В.Д. Соловиченко // Проблемы и перспективы инновационного развития агроинженерии, энергоэффективности и ІТ-технологий: материалы Международной научно-практической конференции. п. Майский: изд-во БелГСХА им. В.Я. Горина. –2014. С. 18.
- 10. **Ореховская, А.А.** Азотное питание озимой пшеницы в условиях югозападной части ЦЧР / **А.А. Ореховская**, А.Г. Ступаков // Сборник тезисов Московских международных летних экологических школ MOSES 2013 и 2014 гг. М.: Скрипта манент. 2014. С. 134-135.
- 11. **Ореховская, А.А.** Азотный режим чернозема типичного и продуктивность озимой пшеницы под влиянием севооборотов, способов основной обработки почвы и удобрений в условиях / **А.А. Ореховская**, А.Г. Ступаков // Белгородский Агромир. Белгород: ОГАУ «ИКЦ АПК». 2014. № 7 (88). С. 29-31.
- 12. **Ореховская, А.А.** Влияние агротехнических приемов на продуктивность озимой пшеницы в условиях ЦЧР / **А.А. Ореховская**, А.Г. Ступаков // Вестник Международного института питания растений. -2015. -№ 1. C. 134-135.
- 13. **Ореховская, А.А.** Традиционное и органическое земледелие / **А.А. Ореховская**, А.Г. Ступаков // Проблемы и перспективы инновационного развития агротехнологий: материалы Международной научнопроизводственной конференции (24-26 мая 2015 г.). Том 1. Белгород: изд-во Белгородский ГАУ. 2016. С. 37-38.
- 14. **Ореховская, А.А.** Урожайность и качество озимой пшеницы в зависимости от приемов возделывания / **А.А. Ореховская**, Навольнева Е.В. // Перспективные направления развития сельского хозяйства: сборник трудов

- ВСМУиС аграрных образовательных и научных учреждений. М.: ФГБНУ «Росинформагротех». 2015. С. 40-43.
- 15. Ключник Ю.Ю. Проблема нитратного загрязнения почв и пути ее решения / Ю.Ю. Ключник, **А.А. Ореховская** // Материалы Международной студенческой научной конференции (9-10 февраля 2016 г.). Том 2. Белгород: изд-во ФГБОУ ВО Белгородский ГАУ. 2016. С. 130.
- 16. **Ореховская, А.А.** Влияние доз удобрений на кислотные свойства чернозема типичного / **А.А. Ореховская**, Е.В. Навольнева, В.Д. Соловиченко, А.Г. Ступаков, Т.А. Ореховская, М.А. Куликова, А.С. Беспаленко // Сборник докладов научно-практической конференции с международным участием Курского отделения МОО «Общество почвоведов имени В.В. Докучаева». 2016. С. 226-229.
- 17. **Ореховская, А.А.** Запасы продуктивной влаги в почве в посевах озимой пшеницы / **А.А. Ореховская**, Т.А. Ореховская // Проблемы и перспективы инновационного развития агротехнологий: материалы Международной научнопроизводственной конференции (23-25 мая 2016 г.). Том 1. Белгород: изд-во Белгородский ГАУ. 2016. С. 41-42.
- 18. **Ореховская, А.А.** Воспроизводство плодородия чернозема типичного в условиях биологизации земледелия / **А.А. Ореховская**, Т.А. Ореховская, А.Г. Ступаков, М.А. Куликова // Проблемы и перспективы инновационного развития агротехнологий: материалы Международной научнопроизводственной конференции (23-25 мая 2016 г.). Том 1. Белгород: изд-во Белгородский ГАУ. 2016. С. 43-44.
- 19. **Ореховская, А.А.** Нитрификационная способность чернозема типичного в зависимости от агротехнологических приемов / **А.А. Ореховская,** А.Г. Ступаков // Инновационные технологии и технические средства для АПК: материалы Международной научно-практической конференции молодых ученых и специалистов (Россия, Воронеж, 15-17 ноября). Ч.ІІ. Воронеж: ФГБОУ ВО Воронежский ГАУ. 2016. С. 38-41.
- 20. Донченко, И.С. Круговорот азота в агроценозе / И.С. Донченко, **А.А. Ореховская** // Материалы Международной студенческой научной конференции (п. Майский, 7-8 февраля 2017 г.): в 2 т. Т.2. п. Майский: Издательство ФГБОУ ВО Белгородский ГАУ. 2017. С. 137.